Pytorch,torch.utils.checkpoint(),PyTorch中的torch.utils.checkpoint()的使用详解

马肤

温馨提示:这篇文章已超过475天没有更新,请注意相关的内容是否还可用!

摘要:PyTorch中的torch.utils.checkpoint()函数是一种用于优化计算图中内存使用的工具。该函数允许在计算图中保存中间结果,并在后续计算中按需重新加载这些结果,从而避免存储大量中间数据所需的额外内存。通过checkpoint机制,可以在处理大型模型或数据集时更有效地管理内存资源。

在PyTorch中,torch.utils.checkpoint 模块提供了实现梯度检查点(也称为checkpointing)的功能。这个技术主要用于训练时内存优化,它允许我们以计算时间为代价,减少训练深度网络时的内存占用。

Pytorch,torch.utils.checkpoint(),PyTorch中的torch.utils.checkpoint()的使用详解 第1张
(图片来源网络,侵删)

原理

梯度检查点技术的基本原理是,在前向传播的过程中,并不保存所有的中间激活值。相反,它只保存一部分关键的激活值。在反向传播时,根据保留的激活值重新计算丢弃的中间激活值。因此内存的使用量会下降,但计算量会增加,因为需要重新计算一些前向传播的部分。

用法

torch.utils.checkpoint 中主要的函数是 checkpoint。checkpoint 函数可以用来封装模型的一部分或者一个复杂的运算,这部分会使用梯度检查点。它的一般用法是:

Pytorch,torch.utils.checkpoint(),PyTorch中的torch.utils.checkpoint()的使用详解 第2张
(图片来源网络,侵删)
import torch
from torch.utils.checkpoint import checkpoint
# 定义一个前向传播函数
def custom_forward(*inputs):
    # 定义你的前向传播逻辑
    # 例如: x, y = inputs; result = x + y
    ...
    return result
# 在训练的前向传播过程中使用梯度检查点
model_output = checkpoint(custom_forward, *model_inputs)

在每次调用 custom_forward 函数时,它都会返回正常的前向传播结果。不过,checkpoint 函数会确保仅保留必须的激活值(即 custom_forward 的输出)。其他激活值不会保存在内存中,需要在反向传播时重新计算。

下面是一个具体的示例,演示了如何在一个简单的模型中使用 checkpoint 函数:

import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
class SomeModel(nn.Module):
    def __init__(self):
        super(SomeModel, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 50, 5)
    def forward(self, x):
        # 使用checkpoint来减少第二层卷积的内存使用量
        x = self.conv1(x)
        x = checkpoint(self.conv2, x)
        return x
model = SomeModel()
input = torch.randn(1, 1, 28, 28)
output = model(input)
loss = output.sum()
loss.backward()

在上面的例子中,conv2的前向计算是通过 checkpoint 封装的,这意味着在 conv1 的输出和 conv2 的输出之间的激活值不会被完全存储。在反向传播时,这些丢失的激活值会通过再次前向传递 conv2 来重新计算。

使用梯度检查点技术可以在训练大型模型时减少显存的占用,但由于在反向传播时额外的重新计算,它会增加一些计算成本。


0
收藏0
文章版权声明:除非注明,否则均为VPS857原创文章,转载或复制请以超链接形式并注明出处。

相关阅读

  • 【研发日记】Matlab/Simulink自动生成代码(二)——五种选择结构实现方法,Matlab/Simulink自动生成代码的五种选择结构实现方法(二),Matlab/Simulink自动生成代码的五种选择结构实现方法详解(二)
  • 超级好用的C++实用库之跨平台实用方法,跨平台实用方法的C++实用库超好用指南,C++跨平台实用库使用指南,超好用实用方法集合,C++跨平台实用库超好用指南,方法与技巧集合
  • 【动态规划】斐波那契数列模型(C++),斐波那契数列模型(C++实现与动态规划解析),斐波那契数列模型解析与C++实现(动态规划)
  • 【C++】,string类底层的模拟实现,C++中string类的模拟底层实现探究
  • uniapp 小程序实现微信授权登录(前端和后端),Uniapp小程序实现微信授权登录全流程(前端后端全攻略),Uniapp小程序微信授权登录全流程攻略,前端后端全指南
  • Vue脚手架的安装(保姆级教程),Vue脚手架保姆级安装教程,Vue脚手架保姆级安装指南,Vue脚手架保姆级安装指南,从零开始教你如何安装Vue脚手架
  • 如何在树莓派 Raspberry Pi中本地部署一个web站点并实现无公网IP远程访问,树莓派上本地部署Web站点及无公网IP远程访问指南,树莓派部署Web站点及无公网IP远程访问指南,本地部署与远程访问实践,树莓派部署Web站点及无公网IP远程访问实践指南,树莓派部署Web站点及无公网IP远程访问实践指南,本地部署与远程访问详解,树莓派部署Web站点及无公网IP远程访问实践详解,本地部署与远程访问指南,树莓派部署Web站点及无公网IP远程访问实践详解,本地部署与远程访问指南。
  • vue2技术栈实现AI问答机器人功能(流式与非流式两种接口方法),Vue2技术栈实现AI问答机器人功能,流式与非流式接口方法探究,Vue2技术栈实现AI问答机器人功能,流式与非流式接口方法详解
  • 发表评论

    快捷回复:表情:
    评论列表 (暂无评论,0人围观)

    还没有评论,来说两句吧...

    目录[+]

    取消
    微信二维码
    微信二维码
    支付宝二维码