温馨提示:这篇文章已超过400天没有更新,请注意相关的内容是否还可用!
摘要:本章介绍了基于PyTorch框架的CycleGAN实战应用。李宏毅深度学习的课程内容涵盖了CycleGAN的原理和实现方法。通过本章的学习,读者可以了解到如何使用CycleGAN进行图像风格的转换,实现不同领域之间的无监督学习。实战部分提供了详细的代码示例和解释,帮助读者更好地理解和应用CycleGAN技术。
前言:
论文中直接提供了GitHub 的代码下载地址
GitHub - junyanz/pytorch-CycleGAN-and-pix2pix: Image-to-Image Translation in PyTorch
这里面简单的解读一下.
目录:
1. 模型参数配置
2: 生成器模型
3: 鉴别器模型
4: network代码
5: cycleGAN代码
6: 训练和测试代码
一 参数配置模块
文件目录:options\train_options.py
参数配置是通过argparse 实现的,这样通过google colab 调试的时候
可以动态的设置超参数进行训练
动态设置超参数命令
python my_program.py --gender male --height 1.75 |
二 生成器模型
在network.py中实现,后面在代码示例中,我直接提供了一个入口可以Debug一下
Total params: 11,378,179
Trainable params: 11,378,179
Non-trainable params: 0
生成器主要由5个模块组成
2.1 输入层
2.2 下采样层
2.3 残差网络层,默认9个
2.4 上采样层
三 鉴别器模型
network.py中实现
Total params: 2,764,737
Trainable params: 2,764,737
Non-trainable params: 0
模型结构
四 networks.py
主要定义了生成器,鉴别器的网络结构
define_G 生成器
define_D 鉴别器
# -*- coding: utf-8 -*- """ Created on Mon Apr 1 13:48:33 2024 @author: chengxf2 """ import torch import torch.nn as nn from torch.nn import init import functools from torch.optim import lr_scheduler from torchsummary import summary ############################################################################### # Helper Functions ############################################################################### class Identity(nn.Module): def forward(self, x): return x def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func) # apply the initialization function def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: affine: 代表gamma,beta是否可学。如果设为True,代表两个参数是通过学习得到的; 如果设为False,代表两个参数是固定值,默认情况下,gamma是1,beta是0。 track_running_stats: BatchNorm2d中存储的的均值和方差是否需要更新,若为True,表示需要更新; 反之不需要更新。更新公式参考momentum参数介绍 。 """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': def norm_layer(x): return Identity() else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids[0]) net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs init_weights(net, init_type, init_gain=init_gain) return net class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.model(input) def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]): """鉴别器 Parameters: input_nc (3) -- the number of channels in input images ndf (64) -- the number of filters in the first conv layer netD ('basic') -- the architecture's name: basic | n_layers | pixel n_layers_D (3) -- the number of conv layers in the discriminator; effective when netD=='n_layers' norm ('instance') -- the type of normalization layers used in the network. init_type ('normal') -- the name of the initialization method. init_gain (0.02) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a discriminator Our current implementation provides three types of discriminators: [basic]: 'PatchGAN' classifier described in the original pix2pix paper. It can classify whether 70×70 overlapping patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion. [n_layers]: With this mode, you can specify the number of conv layers in the discriminator with the parameter (default=3 as used in [basic] (PatchGAN).) [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not. It encourages greater color diversity but has no effect on spatial statistics. The discriminator has been initialized by . It uses Leakly RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netD == 'basic': # default PatchGAN classifier net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer) elif netD == 'n_layers': # more options net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer) raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD) return init_net(net, init_type, init_gain, gpu_ids) def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]): """创建一个生成器 Parameters: input_nc=3-- input image channels: 3 for RGB and 1 for grayscale output_nc=3 -- output image channels: 3 for RGB and 1 for grayscale' ngf =64 -- the number of filters in the last conv layer netG='resnet_9blocks' -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128 norm='instance' -- the name of normalization layers used in the network: batch | instance | none use_dropout =False -- if use dropout layers. init_type ='normal' -- the name of our initialization method. init_gain =0.02 -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a generator Our current implementation provides two types of generators: U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images) The original U-Net paper: https://arxiv.org/abs/1505.04597 Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks) Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style). The generator has been initialized by . It uses RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netG == 'resnet_9blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9) elif netG == 'resnet_6blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) else: raise NotImplementedError('Generator model name [%s] is not recognized' % netG) return init_net(net, init_type, init_gain, gpu_ids) class ResnetGenerator(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): """Construct a Resnet-based generator Parameters: input_nc (3) -- the number of channels in input images output_nc (3) -- the number of channels in output images ngf (64) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d #镜像天聪,卷积 model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i [] model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input) class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out if __name__ == '__main__': input_nc =3 output_nc =3 ndf = 64 ngf= 64 netD ='basic' netG = 'resnet_9blocks' n_layers_D =3 norm ='instance' init_type = 'normal' init_gain = 0.02 gpu_ids = [] use_dropout=False netG_A = define_G(input_nc, output_nc, ngf, netG, norm, use_dropout, init_type, init_gain, gpu_ids) #print(netG_A) summary(model=netG_A, input_size=(3,256,256),batch_size=1, device="cpu") netD_A= define_D(input_nc, ndf, netD, n_layers_D, norm, init_type, init_gain, gpu_ids) summary(model=netD_A, input_size=(3,256,256),batch_size=1, device="cpu")
五cycleGAN 模型
cycle_gan_model.py
主要定义了 损失函数,训练方法
GAN 模型是先训练鉴别器D, 再训练生成器G
CycleGAN 是先训练生成器G, 再训练鉴别器D
3.1 cycle_gan_model.py
# -*- coding: utf-8 -*- """ Created on Thu Mar 28 14:02:15 2024 @author: chengxf2 """ import torch import itertools from . import networks from . import ImagePool from .base_model import BaseModel class CycleGANModel(): """ netG: 生成器 netD: 鉴别器 """ def __init__(self,opt): """ 初始化CycleGAN 模型 """ BaseModel.__init__(self, opt) #论文实例代码 code(vs. paper) G_A(G) G_B(F),D_A(D_Y),D_B(D_X),这里直接更改成论文的命名方式 self.netG_X = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) self.netG_Y = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: #定义鉴别器 self.netD_X = networks.define_D(opt.input_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) self.netD_Y = networks.define_D(opt.output_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: if opt.lambda_identity > 0.0: # only works when input and output images have the same number of channels assert(opt.input_nc == opt.output_nc) self.fake_A_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images self.fake_B_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images # define loss functions self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # define GAN loss. self.criterionCycle = torch.nn.L1Loss() self.criterionIdt = torch.nn.L1Loss() # initialize optimizers; schedulers will be automatically created by function . self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_X.parameters(), self.netG_Y.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_X.parameters(), self.netD_Y.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers.append(self.optimizer_G) self.optimizers.append(self.optimizer_D) def set_input(self): """ 从数据加载器中解压缩输入数据,并执行必要的预处理步骤。 参数: input(dict):包括数据本身及其元数据信息 选项“direction”可用于交换域X和域Y。 """ XtoY = self.opt.direction == 'XtoY' self.real_X = input['X' if XtoY else 'Y'].to(self.device) self.real_Y= input['Y' if XtoY else 'X'].to(self.device) self.image_path = input['X_paths' if XtoY else 'Y_Paths'] def forward(self): """运行前向传播;由函数 和 调用""" self.fake_Y = self.netG_X(self.real_X) #G_X(X) self.rec_X = self.netG_Y(self.fake_Y) #G_Y(G_X(X)) 重构 self.fake_X = self.netG_Y(self.real_Y) #G_Y(Y) self.rec_Y = self.netG_X(self.fake_Y) #G_X(fake_Y) def optimize_parameters(self): """计算损失、梯度并更新网络权重;在每次训练迭代中调用""" # forward self.forward() # compute fake images and reconstruction images. #先训练生成器 G_X and G_Y,这个跟GAN是相反的 self.set_requires_grad([self.netD_X, self.netD_Y], False) # Ds require no gradients when optimizing Gs self.optimizer_G.zero_grad() # set G_A and G_B's gradients to zero self.backward_G() # calculate gradients for G_A and G_B self.optimizer_G.step() # update G_A and G_B's weights # D_X and D_Y self.set_requires_grad([self.netD_X, self.netD_Y], True) self.optimizer_D.zero_grad() # set D_A and D_B's gradients to zero self.backward_D_X() # calculate gradients for D_A self.backward_D_Y() # calculate graidents for D_B self.optimizer_D.step() # update D_A and D_B's weights def backward_G(self): """Calculate the loss for generators G_X and G_Y""" lambda_idt = self.opt.lambda_identity lambda_X = self.opt.lambda_X lambda_Y = self.opt.lambda_Y # Identity loss if lambda_idt > 0: # identity if real_Y is fed: self.idt_X = self.netG_X(self.real_Y) self.loss_idt_X = self.criterionIdt(self.idt_X, self.real_Y) * lambda_X * lambda_idt # identity if real_X is fed: self.idt_Y = self.netG_Y(self.real_X) self.loss_idt_Y = self.criterionIdt(self.idt_Y, self.real_X) * lambda_Y * lambda_idt else: self.loss_idt_X = 0 self.loss_idt_Y = 0 # GAN loss D_A(G_A(A)) self.loss_G_X = self.criterionGAN(self.netD_Y(self.fake_Y), True) # GAN loss D_B(G_B(B)) self.loss_G_Y = self.criterionGAN(self.netD_X(self.fake_X), True) # Forward cycle loss || G_B(G_A(A)) - A|| self.loss_cycle_X = self.criterionCycle(self.rec_X, self.real_X) * lambda_X # Backward cycle loss || G_A(G_B(B)) - B|| self.loss_cycle_Y = self.criterionCycle(self.rec_Y, self.real_Y) * lambda_Y # combined loss and calculate gradients self.loss_G = self.loss_G_X + self.loss_G_Y + self.loss_cycle_X + self.loss_cycle_Y + self.loss_idt_X + self.loss_idt_Y self.loss_G.backward() def backward_D_Y(self): """Calculate GAN loss for discriminator D_X""" fake_Y = self.fake_B_pool.query(self.fake_Y) self.loss_D_Y = self.backward_D_basic(self.netD_Y, self.real_Y, fake_Y) def backward_D_X(self): """Calculate GAN loss for discriminator D_B""" fake_X = self.fake_A_pool.query(self.fake_X) self.loss_D_X = self.backward_D_basic(self.netD_X, self.real_X, fake_X) def backward_D_basic(self, netD, real, fake): """Calculate GAN loss for the discriminator,patchGAN Parameters: netD (network) -- the discriminator D real (tensor array) -- real images fake (tensor array) -- images generated by a generator Return the discriminator loss. We also call loss_D.backward() to calculate the gradients. """ # Real pred_real = netD(real) loss_D_real = self.criterionGAN(pred_real, True) # Fake pred_fake = netD(fake.detach()) loss_D_fake = self.criterionGAN(pred_fake, False) # Combined loss and calculate gradients loss_D = (loss_D_real + loss_D_fake) * 0.5 loss_D.backward() return loss_D
3.2 base_model.py
基类
import os import torch from collections import OrderedDict from abc import ABC, abstractmethod from . import networks class BaseModel(ABC): """This class is an abstract base class (ABC) for models. To create a subclass, you need to implement the following five functions: -- : initialize the class; first call BaseModel.__init__(self, opt). -- : unpack data from dataset and apply preprocessing. -- : produce intermediate results. -- : calculate losses, gradients, and update network weights. -- : (optionally) add model-specific options and set default options. """ def __init__(self, opt): """Initialize the BaseModel class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions When creating your custom class, you need to implement your own initialization. In this function, you should first call Then, you need to define four lists: -- self.loss_names (str list): specify the training losses that you want to plot and save. -- self.model_names (str list): define networks used in our training. -- self.visual_names (str list): specify the images that you want to display and save. -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. """ self.opt = opt self.gpu_ids = opt.gpu_ids self.isTrain = opt.isTrain self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir if opt.preprocess != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark. torch.backends.cudnn.benchmark = True self.loss_names = [] self.model_names = [] self.visual_names = [] self.optimizers = [] self.image_paths = [] self.metric = 0 # used for learning rate policy 'plateau' @staticmethod def modify_commandline_options(parser, is_train): """Add new model-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ return parser @abstractmethod def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input (dict): includes the data itself and its metadata information. """ pass @abstractmethod def forward(self): """Run forward pass; called by both functions and .""" pass @abstractmethod def optimize_parameters(self): """Calculate losses, gradients, and update network weights; called in every training iteration""" pass def setup(self, opt): """Load and print networks; create schedulers Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ if self.isTrain: self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers] if not self.isTrain or opt.continue_train: load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch self.load_networks(load_suffix) self.print_networks(opt.verbose) def eval(self): """Make models eval mode during test time""" for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) net.eval() def test(self): """Forward function used in test time. This function wraps function in no_grad() so we don't save intermediate steps for backprop It also calls to produce additional visualization results """ with torch.no_grad(): self.forward() self.compute_visuals() def compute_visuals(self): """Calculate additional output images for visdom and HTML visualization""" pass def get_image_paths(self): """ Return image paths that are used to load current data""" return self.image_paths def update_learning_rate(self): """Update learning rates for all the networks; called at the end of every epoch""" old_lr = self.optimizers[0].param_groups[0]['lr'] for scheduler in self.schedulers: if self.opt.lr_policy == 'plateau': scheduler.step(self.metric) else: scheduler.step() lr = self.optimizers[0].param_groups[0]['lr'] print('learning rate %.7f -> %.7f' % (old_lr, lr)) def get_current_visuals(self): """Return visualization images. train.py will display these images with visdom, and save the images to a HTML""" visual_ret = OrderedDict() for name in self.visual_names: if isinstance(name, str): visual_ret[name] = getattr(self, name) return visual_ret def get_current_losses(self): """Return traning losses / errors. train.py will print out these errors on console, and save them to a file""" errors_ret = OrderedDict() for name in self.loss_names: if isinstance(name, str): errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number return errors_ret def save_networks(self, epoch): """Save all the networks to the disk. Parameters: epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) """ for name in self.model_names: if isinstance(name, str): save_filename = '%s_net_%s.pth' % (epoch, name) save_path = os.path.join(self.save_dir, save_filename) net = getattr(self, 'net' + name) if len(self.gpu_ids) > 0 and torch.cuda.is_available(): torch.save(net.module.cpu().state_dict(), save_path) net.cuda(self.gpu_ids[0]) else: torch.save(net.cpu().state_dict(), save_path) def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0): """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)""" key = keys[i] if i + 1 == len(keys): # at the end, pointing to a parameter/buffer if module.__class__.__name__.startswith('InstanceNorm') and \ (key == 'running_mean' or key == 'running_var'): if getattr(module, key) is None: state_dict.pop('.'.join(keys)) if module.__class__.__name__.startswith('InstanceNorm') and \ (key == 'num_batches_tracked'): state_dict.pop('.'.join(keys)) else: self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1) def load_networks(self, epoch): """Load all the networks from the disk. Parameters: epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) """ for name in self.model_names: if isinstance(name, str): load_filename = '%s_net_%s.pth' % (epoch, name) load_path = os.path.join(self.save_dir, load_filename) net = getattr(self, 'net' + name) if isinstance(net, torch.nn.DataParallel): net = net.module print('loading the model from %s' % load_path) # if you are using PyTorch newer than 0.4 (e.g., built from # GitHub source), you can remove str() on self.device state_dict = torch.load(load_path, map_location=str(self.device)) if hasattr(state_dict, '_metadata'): del state_dict._metadata # patch InstanceNorm checkpoints prior to 0.4 for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop self.__patch_instance_norm_state_dict(state_dict, net, key.split('.')) net.load_state_dict(state_dict) def print_networks(self, verbose): """Print the total number of parameters in the network and (if verbose) network architecture Parameters: verbose (bool) -- if verbose: print the network architecture """ print('---------- Networks initialized -------------') for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) num_params = 0 for param in net.parameters(): num_params += param.numel() if verbose: print(net) print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6)) print('-----------------------------------------------') def set_requires_grad(self, nets, requires_grad=False): """Set requies_grad=Fasle for all the networks to avoid unnecessary computations Parameters: nets (network list) -- a list of networks requires_grad (bool) -- whether the networks require gradients or not """ if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad
四 训练和测试
4.1 train.py
"""General-purpose training script for image-to-image translation. This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization). You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model'). It first creates model, dataset, and visualizer given the option. It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models. The script supports continue/resume training. Use '--continue_train' to resume your previous training. Example: Train a CycleGAN model: python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Train a pix2pix model: python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA See options/base_options.py and options/train_options.py for more training options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import time from options.train_options import TrainOptions from data import create_dataset from models import create_model from util.visualizer import Visualizer if __name__ == '__main__': opt = TrainOptions().parse() # get training options dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options dataset_size = len(dataset) # get the number of images in the dataset. print('The number of training images = %d' % dataset_size) model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers visualizer = Visualizer(opt) # create a visualizer that display/save images and plots total_iters = 0 # the total number of training iterations for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by , + epoch_start_time = time.time() # timer for entire epoch iter_data_time = time.time() # timer for data loading per iteration epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch model.update_learning_rate() # update learning rates in the beginning of every epoch. for i, data in enumerate(dataset): # inner loop within one epoch iter_start_time = time.time() # timer for computation per iteration if total_iters % opt.print_freq == 0: t_data = iter_start_time - iter_data_time total_iters += opt.batch_size epoch_iter += opt.batch_size model.set_input(data) # unpack data from dataset and apply preprocessing model.optimize_parameters() # calculate loss functions, get gradients, update network weights if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file save_result = total_iters % opt.update_html_freq == 0 model.compute_visuals() visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk losses = model.get_current_losses() t_comp = (time.time() - iter_start_time) / opt.batch_size visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data) if opt.display_id > 0: visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses) if total_iters % opt.save_latest_freq == 0: # cache our latest model every iterations print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters)) save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest' model.save_networks(save_suffix) iter_data_time = time.time() if epoch % opt.save_epoch_freq == 0: # cache our model every epochs print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters)) model.save_networks('latest') model.save_networks(epoch) print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))
4.2 test.py
测试代码
"""General-purpose test script for image-to-image translation. Once you have trained your model with train.py, you can use this script to test the model. It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'. It first creates model and dataset given the option. It will hard-code some parameters. It then runs inference for '--num_test' images and save results to an HTML file. Example (You need to train models first or download pre-trained models from our website): Test a CycleGAN model (both sides): python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Test a CycleGAN model (one side only): python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout The option '--model test' is used for generating CycleGAN results only for one side. This option will automatically set '--dataset_mode single', which only loads the images from one set. On the contrary, using '--model cycle_gan' requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use '--results_dir ' to specify the results directory. Test a pix2pix model: python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA See options/base_options.py and options/test_options.py for more test options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import os from options.test_options import TestOptions from data import create_dataset from models import create_model from util.visualizer import save_images from util import html try: import wandb except ImportError: print('Warning: wandb package cannot be found. The option "--use_wandb" will result in error.') if __name__ == '__main__': opt = TestOptions().parse() # get test options # hard-code some parameters for test opt.num_threads = 0 # test code only supports num_threads = 0 opt.batch_size = 1 # test code only supports batch_size = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers # initialize logger if opt.use_wandb: wandb_run = wandb.init(project=opt.wandb_project_name, name=opt.name, config=opt) if not wandb.run else wandb.run wandb_run._label(repo='CycleGAN-and-pix2pix') # create a website web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory if opt.load_iter > 0: # load_iter is 0 by default web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter) print('creating web directory', web_dir) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) # test with eval mode. This only affects layers like batchnorm and dropout. # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode. # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. if opt.eval: model.eval() for i, data in enumerate(dataset): if i >= opt.num_test: # only apply our model to opt.num_test images. break model.set_input(data) # unpack data from data loader model.test() # run inference visuals = model.get_current_visuals() # get image results img_path = model.get_image_paths() # get image paths if i % 5 == 0: # save images to an HTML file print('processing (%04d)-th image... %s' % (i, img_path)) save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize, use_wandb=opt.use_wandb) webpage.save() # save the HTML
还没有评论,来说两句吧...