【Yolov8 Opencv C++系列保姆教程】Yolov8 opencv c++ 版本保姆教程,Yolov8训练自己的数据集,实现红绿灯识别及红绿灯故障检测 ,红绿灯故障识别。,Yolov8 OpenCV C++教程,训练自定义数据集实现红绿灯识别与故障检测

马肤

温馨提示:这篇文章已超过467天没有更新,请注意相关的内容是否还可用!

本摘要介绍了关于Yolov8 Opencv C++系列的保姆教程。该教程涵盖了如何使用Yolov8训练自己的数据集,并利用OpenCV库实现红绿灯识别及红绿灯故障检测的功能。通过本教程,读者可以学习到如何使用C++语言进行深度学习模型的训练和实际应用,特别是在智能交通领域中的红绿灯识别与故障检测方面的应用。

目录

一、Yolov8简介

1、yolov8 源码地址:

2、官方文档:

3、预训练模型百度网盘地址:

二、模型训练

1、标定红绿灯数据:

2、训练环境:

3、数据转化:

4、构造训练数据:

5、训练样本:

三、验证模型:

1、图像测试:

2、视频测试:

四、导出ONNX

五、Opencv实现Yolov8 C++ 识别

1、开发环境:

2、main函数代码:

3、yolov8 头文件inference.h代码:

4、yolov8 cpp文件inference.cpp代码:


一、Yolov8简介

1、yolov8 源码地址:

工程链接:https://github.com/ultralytics/ultralytics

2、官方文档:

CLI - Ultralytics YOLOv8 Docs

3、预训练模型百度网盘地址:

训练时需要用到,下载的网址较慢:

如果模型下载不了,加QQ:187100248.

链接: https://pan.baidu.com/s/1YfMxRPGk8LF75a4cbgYxGg 提取码: rd7b

二、模型训练

1、标定红绿灯数据:

         类别为23类,分别为:

红绿灯类别
red_lightgreen_lightyellow_lightoff_lightpart_ry_lightpart_rg_light
part_yg_lightryg_lightcountdown_off_lightcountdown_on_lightshade_lightzero
onetwothreefourfivesix
seveneightninebrokeNumberbrokenLight

        标注工具地址:AI标注工具Labelme和LabelImage Labelme和LabelImage集成工具_labelimage与labelme-CSDN博客

【Yolov8 Opencv C++系列保姆教程】Yolov8 opencv c++ 版本保姆教程,Yolov8训练自己的数据集,实现红绿灯识别及红绿灯故障检测 ,红绿灯故障识别。,Yolov8 OpenCV C++教程,训练自定义数据集实现红绿灯识别与故障检测 第1张 标注后图像格式

2、训练环境:

1)、Ubuntu18.04;

2)、Cuda11.7 + CUDNN8.0.6;

3)、opencv4.5.5;

4)、PyTorch1.8.1-GPU;

5)、python3.9

3、数据转化:

 1)、需要把上面标定的数据集中的.xml文件转换为.txt,转换代码为:

import os
import shutil
import xml.etree.ElementTree as ET
from xml.etree.ElementTree import Element, SubElement
from PIL import Image
import cv2
classes = ['red_light', 'green_light', 'yellow_light', 'off_light', 'part_ry_light', 'part_rg_light', 'part_yg_light', 'ryg_light',
           'countdown_off_light', 'countdown_on_light','shade_light','zero','one','two','three','four','five','six','seven',
           'eight','nine','brokeNumber','brokenLight']
class Xml_make(object):
    def __init__(self):
        super().__init__()
    def __indent(self, elem, level=0):
        i = "\n" + level * "\t"
        if len(elem):
            if not elem.text or not elem.text.strip():
                elem.text = i + "\t"
            if not elem.tail or not elem.tail.strip():
                elem.tail = i
            for elem in elem:
                self.__indent(elem, level + 1)
            if not elem.tail or not elem.tail.strip():
                elem.tail = i
        else:
            if level and (not elem.tail or not elem.tail.strip()):
                elem.tail = i
    def _imageinfo(self, list_top):
        annotation_root = ET.Element('annotation')
        annotation_root.set('verified', 'no')
        tree = ET.ElementTree(annotation_root)
        '''
        0:xml_savepath 1:folder,2:filename,3:path
        4:checked,5:width,6:height,7:depth
        '''
        folder_element = ET.Element('folder')
        folder_element.text = list_top[1]
        annotation_root.append(folder_element)
        filename_element = ET.Element('filename')
        filename_element.text = list_top[2]
        annotation_root.append(filename_element)
        path_element = ET.Element('path')
        path_element.text = list_top[3]
        annotation_root.append(path_element)
        # checked_element = ET.Element('checked')
        # checked_element.text = list_top[4]
        # annotation_root.append(checked_element)
        source_element = ET.Element('source')
        database_element = SubElement(source_element, 'database')
        database_element.text = 'Unknown'
        annotation_root.append(source_element)
        size_element = ET.Element('size')
        width_element = SubElement(size_element, 'width')
        width_element.text = str(list_top[5])
        height_element = SubElement(size_element, 'height')
        height_element.text = str(list_top[6])
        depth_element = SubElement(size_element, 'depth')
        depth_element.text = str(list_top[7])
        annotation_root.append(size_element)
        segmented_person_element = ET.Element('segmented')
        segmented_person_element.text = '0'
        annotation_root.append(segmented_person_element)
        return tree, annotation_root
    def _bndbox(self, annotation_root, list_bndbox):
        for i in range(0, len(list_bndbox), 9):
            object_element = ET.Element('object')
            name_element = SubElement(object_element, 'name')
            name_element.text = list_bndbox[i]
            # flag_element = SubElement(object_element, 'flag')
            # flag_element.text = list_bndbox[i + 1]
            pose_element = SubElement(object_element, 'pose')
            pose_element.text = list_bndbox[i + 2]
            truncated_element = SubElement(object_element, 'truncated')
            truncated_element.text = list_bndbox[i + 3]
            difficult_element = SubElement(object_element, 'difficult')
            difficult_element.text = list_bndbox[i + 4]
            bndbox_element = SubElement(object_element, 'bndbox')
            xmin_element = SubElement(bndbox_element, 'xmin')
            xmin_element.text = str(list_bndbox[i + 5])
            ymin_element = SubElement(bndbox_element, 'ymin')
            ymin_element.text = str(list_bndbox[i + 6])
            xmax_element = SubElement(bndbox_element, 'xmax')
            xmax_element.text = str(list_bndbox[i + 7])
            ymax_element = SubElement(bndbox_element, 'ymax')
            ymax_element.text = str(list_bndbox[i + 8])
            annotation_root.append(object_element)
        return annotation_root
    def txt_to_xml(self, list_top, list_bndbox):
        tree, annotation_root = self._imageinfo(list_top)
        annotation_root = self._bndbox(annotation_root, list_bndbox)
        self.__indent(annotation_root)
        tree.write(list_top[0], encoding='utf-8', xml_declaration=True)
def txt_2_xml(source_path, xml_save_dir, jpg_save_dir,txt_dir):
    COUNT = 0
    for folder_path_tuple, folder_name_list, file_name_list in os.walk(source_path):
        for file_name in file_name_list:
            file_suffix = os.path.splitext(file_name)[-1]
            if file_suffix != '.jpg':
                continue
            list_top = []
            list_bndbox = []
            path = os.path.join(folder_path_tuple, file_name)
            xml_save_path = os.path.join(xml_save_dir, file_name.replace(file_suffix, '.xml'))
            txt_path = os.path.join(txt_dir, file_name.replace(file_suffix, '.txt'))
            filename = file_name#os.path.splitext(file_name)[0]
            checked = 'NO'
            #print(file_name)
            im = Image.open(path)
            im_w = im.size[0]
            im_h = im.size[1]
            shutil.copy(path, jpg_save_dir)
            if im_w*im_h > 34434015:
                print(file_name)
            if im_w  im_w - 1:
                    xmax = im_w - 1
                if ymax > im_h - 1:
                    ymax = im_h - 1
                if w > 5 and h > 5:
                  list_bndbox.extend([name, flag, pose, truncated, difficult,str(xmin), str(ymin), str(xmax), str(ymax)])
                if xmin  im_w - 1 or ymin  im_h - 1:
                    print(xml_save_path)
            Xml_make().txt_to_xml(list_top, list_bndbox)
            COUNT += 1
            #print(COUNT, xml_save_path)
if __name__ == "__main__":
    out_xml_path = "/home/TL_TrainData/"  # .xml输出文件存放地址
    out_jpg_path = "/home/TL_TrainData/"  # .jpg输出文件存放地址
    txt_path = "/home/Data/TrafficLight/trainData"  # yolov3标注.txt和图片文件夹
    images_path = "/home/TrafficLight/trainData"  # image文件存放地址
    txt_2_xml(images_path, out_xml_path, out_jpg_path, txt_path)

4、构造训练数据:

2)、训练样本数据构造,需要把分成images和labels,images下面放入图片,labels下面放入.txt文件:

【Yolov8 Opencv C++系列保姆教程】Yolov8 opencv c++ 版本保姆教程,Yolov8训练自己的数据集,实现红绿灯识别及红绿灯故障检测 ,红绿灯故障识别。,Yolov8 OpenCV C++教程,训练自定义数据集实现红绿灯识别与故障检测 第2张 分成images和labels 【Yolov8 Opencv C++系列保姆教程】Yolov8 opencv c++ 版本保姆教程,Yolov8训练自己的数据集,实现红绿灯识别及红绿灯故障检测 ,红绿灯故障识别。,Yolov8 OpenCV C++教程,训练自定义数据集实现红绿灯识别与故障检测 第3张 images 【Yolov8 Opencv C++系列保姆教程】Yolov8 opencv c++ 版本保姆教程,Yolov8训练自己的数据集,实现红绿灯识别及红绿灯故障检测 ,红绿灯故障识别。,Yolov8 OpenCV C++教程,训练自定义数据集实现红绿灯识别与故障检测 第4张 labels

5、训练样本:

 1)、首先安装训练包:

pip install ultralytics

2)、修改训练数据参数coco128_light.yaml文件,这个是自己修改的。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128  ← downloads here (7 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: /home/Data/TrafficLight/datasets  # dataset root dir
train: images  # train images (relative to 'path') 128 images
val: images  # val images (relative to 'path') 128 images
test:  # test images (optional)
# Parameters
nc: 23  # number of classes
# Classes
names:
  0: red_light
  1: green_light
  2: yellow_light
  3: off_light
  4: part_ry_light
  5: part_rg_light
  6: part_yg_light
  7: ryg_light
  8: countdown_off_light
  9: countdown_on_light
  10: shade_light
  11: zero
  12: one
  13: two
  14: three
  15: four
  16: five
  17: six
  18: seven
  19: eight
  20: nine
  21: brokeNumber
  22: brokenLight
# Download script/URL (optional)
#download: https://ultralytics.com/assets/coco128.zip

3)、执行 train_yolov8x_light.sh,内容为:

yolo detect train data=coco128_light.yaml model=./runs/last.pt epochs=100 imgsz=640 workers=16 batch=32

        开始启动训练:

        

【Yolov8 Opencv C++系列保姆教程】Yolov8 opencv c++ 版本保姆教程,Yolov8训练自己的数据集,实现红绿灯识别及红绿灯故障检测 ,红绿灯故障识别。,Yolov8 OpenCV C++教程,训练自定义数据集实现红绿灯识别与故障检测 第5张 模型训练启动

三、验证模型:

1、图像测试:

from ultralytics import YOLO
# Load a model
#model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('best.pt')  # load a custom model
# Predict with the model
results = model('bus.jpg')  # predict on an image
# View results
for r in results:
    print(r.boxes)  # print the Boxes object containing the detection bounding boxes

2、视频测试:

import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO('best.pt')
# Open the video file
video_path = "test_car_person_1080P.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()
    if success:
        # Run YOLOv8 inference on the frame
        results = model(frame)
        # Visualize the results on the frame
        annotated_frame = results[0].plot()
        # Display the annotated frame
        cv2.imshow("YOLOv8 Inference", annotated_frame)
        cv2.waitKey(10)

四、导出ONNX

1、训练输出,经过上面的训练后,得到训练生成文件,weights下生成了best.pt和last.pt:

【Yolov8 Opencv C++系列保姆教程】Yolov8 opencv c++ 版本保姆教程,Yolov8训练自己的数据集,实现红绿灯识别及红绿灯故障检测 ,红绿灯故障识别。,Yolov8 OpenCV C++教程,训练自定义数据集实现红绿灯识别与故障检测 第6张 训练数据生成文件

2、等训练完毕后,利用best.pt生成best.onnx,执行命令如下:

yolo export model=best.pt imgsz=640 format=onnx opset=12

五、Opencv实现Yolov8 C++ 识别

1、开发环境:

1)、win7/win10;

2)、vs2019;

3)、opencv4.7.0;

2、main函数代码:

#include 
#include 
#include "opencv2/opencv.hpp"
#include "inference.h"
#include 
#include 
#define socklen_t int
#pragma comment (lib, "ws2_32.lib")
using namespace std;
using namespace cv;
int getFiles(std::string path, std::vector& files, std::vector& names)
{
    int i = 0;
    intptr_t hFile = 0;
    struct _finddata_t c_file;
    std::string imageFile = path + "*.*";
    if ((hFile = _findfirst(imageFile.c_str(), &c_file)) == -1L)
    {
        _findclose(hFile);
        return -1;
    }
    else
    {
        while (true)
        {
            std::string strname(c_file.name);
            if (std::string::npos != strname.find(".jpg") || std::string::npos != strname.find(".png") || std::string::npos != strname.find(".bmp"))
            {
                std::string fullName = path + c_file.name;
                files.push_back(fullName);
                std::string cutname = strname.substr(0, strname.rfind("."));
                names.push_back(cutname);
            }
            if (_findnext(hFile, &c_file) != 0)
            {
                _findclose(hFile);
                break;
            }
        }
    }
    return 0;
}
int main()
{
    std::string projectBasePath = "./"; // Set your ultralytics base path
    bool runOnGPU = true;
    //
    // Pass in either:
    //
    // "yolov8s.onnx" or "yolov5s.onnx"
    //
    // To run Inference with yolov8/yolov5 (ONNX)
    //
    // Note that in this example the classes are hard-coded and 'classes.txt' is a place holder.
    Inference inf(projectBasePath + "/best.onnx", cv::Size(640, 640), "classes.txt", runOnGPU);
    std::vector files;
    std::vector names;
    getFiles("./test/", files, names);
    //std::vector imageNames;
    //imageNames.push_back(projectBasePath + "/test/20221104_8336.jpg");
    //imageNames.push_back(projectBasePath + "/test/20221104_8339.jpg");
    for (int i = 0; i  modelScoreThreshold)
                {
                    confidences.push_back(confidence);
                    class_ids.push_back(class_id.x);
                    float x = data[0];
                    float y = data[1];
                    float w = data[2];
                    float h = data[3];
                    int left = int((x - 0.5 * w) * x_factor);
                    int top = int((y - 0.5 * h) * y_factor);
                    int width = int(w * x_factor);
                    int height = int(h * y_factor);
                    boxes.push_back(cv::Rect(left, top, width, height));
                }
            }
        }
        data += dimensions;
    }
    std::vector nms_result;
    cv::dnn::NMSBoxes(boxes, confidences, modelScoreThreshold, modelNMSThreshold, nms_result);
    std::vector detections{};
    for (unsigned long i = 0; i 

0
收藏0
文章版权声明:除非注明,否则均为VPS857原创文章,转载或复制请以超链接形式并注明出处。

相关阅读

  • 【研发日记】Matlab/Simulink自动生成代码(二)——五种选择结构实现方法,Matlab/Simulink自动生成代码的五种选择结构实现方法(二),Matlab/Simulink自动生成代码的五种选择结构实现方法详解(二)
  • 超级好用的C++实用库之跨平台实用方法,跨平台实用方法的C++实用库超好用指南,C++跨平台实用库使用指南,超好用实用方法集合,C++跨平台实用库超好用指南,方法与技巧集合
  • 【动态规划】斐波那契数列模型(C++),斐波那契数列模型(C++实现与动态规划解析),斐波那契数列模型解析与C++实现(动态规划)
  • 【C++】,string类底层的模拟实现,C++中string类的模拟底层实现探究
  • uniapp 小程序实现微信授权登录(前端和后端),Uniapp小程序实现微信授权登录全流程(前端后端全攻略),Uniapp小程序微信授权登录全流程攻略,前端后端全指南
  • Vue脚手架的安装(保姆级教程),Vue脚手架保姆级安装教程,Vue脚手架保姆级安装指南,Vue脚手架保姆级安装指南,从零开始教你如何安装Vue脚手架
  • 如何在树莓派 Raspberry Pi中本地部署一个web站点并实现无公网IP远程访问,树莓派上本地部署Web站点及无公网IP远程访问指南,树莓派部署Web站点及无公网IP远程访问指南,本地部署与远程访问实践,树莓派部署Web站点及无公网IP远程访问实践指南,树莓派部署Web站点及无公网IP远程访问实践指南,本地部署与远程访问详解,树莓派部署Web站点及无公网IP远程访问实践详解,本地部署与远程访问指南,树莓派部署Web站点及无公网IP远程访问实践详解,本地部署与远程访问指南。
  • vue2技术栈实现AI问答机器人功能(流式与非流式两种接口方法),Vue2技术栈实现AI问答机器人功能,流式与非流式接口方法探究,Vue2技术栈实现AI问答机器人功能,流式与非流式接口方法详解
  • 发表评论

    快捷回复:表情:
    评论列表 (暂无评论,0人围观)

    还没有评论,来说两句吧...

    目录[+]

    取消
    微信二维码
    微信二维码
    支付宝二维码